Electronic Edition on a Class of Gauss-like Quadrature Rules

نویسنده

  • Carlos F. Borges
چکیده

We consider a problem that arises in the evaluation of computer graphics illumination models. In particular, there is a need to nd a nite set of wavelengths at which the illumination model should be evaluated. The result of evaluating the illumination model at these points is a sampled representation of the spectral power density of light emanating from a point in the scene. These values are then used to determine the RGB coordinates of the light by evaluating three deenite integrals, each with a common integrand (the SPD) and interval of integration but with distinct weight functions. We develop a method for selecting the sample wavelengths in an optimal manner. More abstractly, we examine the problem of numerically evaluating a set of m deenite integrals taken with respect to distinct weight functions but related by a common integrand and interval of integration. It is shown that when m 3 it is not eecient to use a set of m Gauss rules because valuable information is wasted. We go on to extend the notions used in Gaussian quadrature to nd an optimal set of shared abcissas that maximize precision in a well-deened sense. The classical Gauss rules come out as the special case m = 1 and some analysis is given concerning the existence of these rules when m > 1. In particular, we give conditions on the weight functions that are suucient to guarantee that the shared abcissas are real, distinct, and lie in the interval of integration. Finally, we examine some computational strategies for constructing these rules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient quadrature rules for a class of cordial Volterra integral equations: A comparative study

‎A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations‎. ‎The equations of this class appear in heat conduction problems with mixed boundary conditions‎. ‎The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes‎. ‎A comparative stud...

متن کامل

Quadrature rules for rational functions

It is shown how recent ideas on rational Gauss-type quadrature rules can be extended to Gauss-Kronrod, Gauss-Turr an, and Cauchy principal value quadrature rules. Numerical examples illustrate the advantages in accuracy thus achievable. 0. Introduction The idea of constructing quadrature rules that are exact for rational functions with prescribed poles, rather than for polynomials, has received...

متن کامل

Gauss-type Quadrature Rules for Rational Functions

When integrating functions that have poles outside the interval of integration, but are regular otherwise, it is suggested that the quadrature rule in question ought to integrate exactly not only polynomials (if any), but also suitable rational functions. The latter are to be chosen so as to match the most important poles of the integrand. We describe two methods for generating such quadrature ...

متن کامل

Computation of Gauss-kronrod Quadrature Rules with Non-positive Weights

Recently Laurie presented a fast algorithm for the computation of (2n + 1)-point Gauss-Kronrod quadrature rules with real nodes and positive weights. We describe modifications of this algorithm that allow the computation of Gauss-Kronrod quadrature rules with complex conjugate nodes and weights or with real nodes and positive and negative weights.

متن کامل

Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods

In this paper, we present new Gaussian integration schemes for the efficient and accurate evaluation of weak form integrals that arise in enriched finite element methods. For discontinuous functions we present an algorithm for the construction of Gauss-like quadrature rules over arbitrarily-shaped elements without partitioning. In case of singular integrands, we introduce a new polar transforma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994